

CUTEK Extreme CD50 Chemisys Manufacturing Pty Ltd

Version No: 2.5

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **09/02/2021** Print Date: **09/02/2021** L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	CUTEK Extreme CD50	
Chemical Name	lot Applicable	
Synonyms	Not Available	
Proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains copper 8-quinolinol)	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Decorative wood coating for exterior use.

Details of the supplier of the safety data sheet

Registered company name	Chemisys Manufacturing Pty Ltd	
Address	72 Chetwynd St QLD 4129 Australia	
Telephone	617 3188 5242	
Fax	+617 3073 3919	
Website	www.cutek.com.au	
Email	admin@chemisys.com	

Emergency telephone number

Association / Organisation	Chemisys Manufacturing Pty Ltd	
Emergency telephone numbers	+617 3188 5246	
Other emergency telephone numbers	131 126	

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

COMBUSTIBLE LIQUID, regulated for storage purposes only

ChemWatch Hazard Ratings

	Min	Max	
Flammability	1		
Toxicity	1	1	
Body Contact	2		0 = Minimum 1 = Low
Reactivity	0	1	2 = Moderate
Chronic	3		3 = High 4 = Extreme

CUTEK	Extreme	CD50
COLLA	LAUCINC	0030

Poisons Schedule	6
Classification ^[1]	Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Flammable Liquid Category 4, Acute Aquatic Hazard Category 3, Skin Sensitizer Category 1B, Aspiration Hazard Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word Danger

Hazard statement(s)

H319	Causes serious eye irritation.	
AUH066	Repeated exposure may cause skin dryness and cracking.	
H336	ay cause drowsiness or dizziness.	
H227	Combustible liquid.	
H402	Harmful to aquatic life.	
H317	May cause an allergic skin reaction.	
H304	May be fatal if swallowed and enters airways.	

Precautionary statement(s) Prevention

P272	Contaminated work clothing should not be allowed out of the workplace.	
P273	Avoid release to the environment.	
P261	Avoid breathing mist/vapours/spray.	
P280	Wear protective gloves/protective clothing/eye protection/face protection/hearing protection/	
P271	Use only in a well-ventilated area.	
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/	
P321	Specific treatment (see on this label).	
P331	Do NOT induce vomiting.	
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.	
P302+P352	IF ON SKIN: Wash with plenty of water and soap.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	Call a POISON CENTER/doctor/ if you feel unwell.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233	P403+P233 Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64742-48-9.	10-30	naphtha petroleum, heavy, hydrotreated
Not Available	<10	phosphoric esters
10380-28-6	<1	copper 8-quinolinol
1330-20-7	<1	xylene
64742-54-7.	30-60	paraffinic distillate, heavy, hydrotreated (severe)
64359-81-5	<1	4,5-dichloro-2-octyl-3(2H)-isothiazolone

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	 If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment. Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may
 occur.Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of
 bronchodilators.

BP America Product Safety & Toxicology Department

All persons handling organic phosphorus ester materials regularly should undergo regular medical examination with special stress on the central nervous systems. Whilst atropine or pyridine-2-aldoxime methiodide (PAM) are beneficial antidotes for acute phosphate ester poisonings, they are of little value in reversing acute or chronic neurological damage due to phosphites and some types of aryl phosphate.

- Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product.
- ▶ In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases.
- + High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement.

NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes.

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comments
Methylhippu-ric acids in urine	1.5 gm/gm creatinine	End of shift	
	2 mg/min	Last 4 hrs of shift	

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
----------------------	---

Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) sulfur oxides (SOx) metal oxides other pyrolysis products typical of burning organic material. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.
HAZCHEM	•3Z

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Image: Specify With regit: Construction splitage: Vision: Specify With regit: Construction and applit immediately: · Construction: and applit immediately: Construction: and applit with sead, carted, into the substance, by using protochic equipment. · Construction: and aborts split with send, carted, into the metabolism of vermicultic. Vision: and aborts split with send, carted, into the metabolism. · With construction: Applit with send. Construction: and aborts split with send. Construction: Applit with send. · With construction: Applit with send. Construction: Applit with send. Construction: Applit with send. · With construction: Applit with send. Construction: Applit with send. Construction: Applit with send. · With construction: Applit with send. Construction: Applit with send. Construction: Applit with send. · With construction: Applit with send. Construction: Applit with send. Construction: Applit with send. · With construction: Applit with send. Applit CATION COLLECTION LIMITATIONS · Mayor Split · More self-applit with send. Applit CATION ColLECTION R.W.SS · Construction: Applit with send. · More self-applit with send. A throw pitchtork. R.DGC.RT · More self-applit with send. · More self-applit with send. </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Major Spill Chemical Class: aromatic hydrocarbons For release onto land: recommended sorbents listed in order of priority. SOREENT RANK APELICATION COLLECTION LIMITATIONS LAND SPILL - SMALL Feathers - pillow 1 throw pitchfork DGC, RT cross-linked polymer - particulate 2 shove shove R.W.S.S cross-linked polymer-particulate 3 shove shove R.I.P. wood flore - pillow 2 throw pitchfork R. DGC, RT cross-linked polymer-particulate 3 shove shove R.I.P. wood flore - pillow 4 throw pitchfork R. PGC, RT cross-linked polymer-particulate 3 shove skiploader R. N. SS ftreated day! treated natural organic - particulate 3 blower skiploader R. I. P. polyprop/ene - particulate 3 blower skiploader R. I. P. polyprop/ene - particulate 3 blower skiploader R. N. SS ftreater day! ftreat	Minor Spills	 Slippery when spilt. Clean up all spills immediately. Avoid breathing vapours and contact with skin Control personal contact with the substance, b Contain and absorb spill with sand, earth, inert Wipe up. 	y u t ma	sing prot aterial or	-		
If contamination of drains or waterways occurs, advise emergency services.	Major Spills	Chemical Class: aromatic hydrocarbons For release onto land: recommended sorbents list SORBENT TYPE RANK APPLICATION COLLECT LAND SPILL - SMALL Feathers - pillow cross-linked polymer - particulate cross-linked polymer - pillow sorbent clay - particulate treated clay/ treated natural organic - particulate wood fibre - pillow LAND SPILL - MEDIUM cross-linked polymer -particulate treated clay/ treated natural organic - particulate wood fibre - pillow LAND SPILL - MEDIUM cross-linked polymer -particulate treated clay/ treated natural organic - particulate sorbent clay - particulate treated clay/ treated natural organic - particulate feathers - pillow expanded mineral - particulate I feathers - pillow expanded mineral - particulate I. Not reffective where ground cover is dense R; Not reusable I. Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive si W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substa R.W Melvold et al: Pollution Technology Review N Slippery when spilt. Absorb or contain isothiazolinone liquid spills w The absorbent (and surface soil to a depth suf with an 11% solution of sodium metabisulfite (f 8% hydrochloric acid (HCI).	1 2 3 3 4 1 2 3 3 4 1 2 3 3 4 4 3 3 3 4 4 4 1 2 3 3 3 4 4	LIMI throw shovel throw blower blower blower blower blower blower cleanu 50: Noyo sand, ea nt to ren S2O5) o sothiazol ach volu	pitchfork shovel pitchfork shovel pitchfork shovel pitchfork shovel pitchfork shovel skiploadd skiplo	R,W,SS R, DGC, RT R, I, P, R, I R, P, DGC, RT er R, I, P er R, I, P er R, I, P er N, SS, DGC er DGC, RT er DGC, RT er R, I, W, P, DGC er R, I, W, P, DGC er S, W, W, P, DGC er S, W, W, P, DGC er S, W, W, P, DGC	ite. be shovelled into a drum and treate or 12% sodium sulfite (Na2SO3) and

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. Containers, even those that have been emptied, may contain explosive vapours. Do NOT cut, drill, grind, weld or perform similar operations on or near containers. • Electrostatic discharge may be generated during pumping - this may result in fire. ▶ Ensure electrical continuity by bonding and grounding (earthing) all equipment. • Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). Avoid splash filling. Do NOT use compressed air for filling discharging or handling operations. Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Safe handling Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. • DO NOT allow clothing wet with material to stay in contact with skin Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Other information Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Lined metal can, lined metal pail/ can. Plastic pail. Polyliner drum. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	 Low molecular weight alkanes: May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate. May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat. Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens may generate electrostatic charges, due to low conductivity, on flow or agitation. Avoid flame and ignition sources Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes Interaction between chlorine and ethane over activated carbon at 350 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C. Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen. For monoalkyl phosphates The rate of hydrolysis of most simple monoalkyl phosphates passes through a maximum lying in the pH range of 3 to 5. At alkaline pH values, the hydrolysis rate drops sharply. At acid pH values, a minimum is observed (at pH 1), then

the hydrolysis rate increases again with acidity of the medium. Since the pKa values for the first and second steps of dissociation of methyl phosphate are 1.54 and 6.31, respectively, it can be assumed that the hydrolysis rate maximum at pH 4 corresponds to the highest monoanion concentration in the solution. The decreasing hydrolysis rate in an alkaline medium suggests that the dianion is not active (apparently because the electrostatic repulsion hinders the attack of the dianion by the hydroxyl ion). A nondissociated acid is less active than its monoanion. At pH < 1, one can observe acid-catalyzed hydrolysis with formation of a conjugate acid

For dialkyl phosphates

- Dialkyl phosphates are among the least reactive esters Exceptions include acid phosphates of 1,2-diols,

containing a phosphate group at the adjacent carbon atoms, as well as cyclic diphosphates -so-called cyclic phosphates
 Hydrolysis of the diester in its neutral form proceeds predominantly (70-80%) with cleavage of the C-O bond , while the P-O is broken only in 20 to 30 per cent of the cases.

• As the medium becomes more acidic, the dialkyl phosphate hydrolysis rate increases with acid concentration. The protonated form of the diester is hydrolysed, primarily, at the C-O bond (up to 90%), just as the neutral form, the P-O bond being affected insignificantly (10 %):

 Thus, the widest difference in the hydrolysis rate of di- and monophosphates is observed in the case of the monoanionic form. The differences in the rates of hydrolysis of other ionic forms are not as pronounced.
 For trialkyl phosphates

 Trialkylphosphates undergo hydrolysis in both acid and alkaline media. At alkaline pH values, the mechanism of the reaction is bimolecular and includes a nucleophilic attack of the tetrahedral phosphorus atom by a hydroxyl ion (experiments have shown that the P-O bond is usually broken in this case

Cyclic phosphates

• Unlike simple dialkyl phosphates, five-membered cyclic diphosphates are extremely reactive. The high reactivity of cyclic phosphates, as compared to non-cyclic ones, can be explained by the ring being strained. The straining seems to occur only in five-membered cyclic phosphates, in view of the fact that the reactivity of compounds with a larger (six-and seven-membered) ring equals that of dimethyl phosphate or is even lower.

Xylenes:

- + may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- attack some plastics, rubber and coatings
- may generate electrostatic charges on flow or agitation due to low conductivity.
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.
- A number of phosphate and thiophosphate esters are of limited thermal stability and undergo highly exothermic self-accelerating decomposition reactions which may be catalysed by impurities.
- The potential hazards can be reduced by appropriate thermal control measures.
- BRETHERICK L.: Handbook of Reactive Chemical Hazards

Thermal decomposition of organophosphate esters, in the presence of trimethylolpropane or its homologues (common components of synthetic lubricants), may produce bicyclic phosphates and phosphites. These may occur be produced in as little as 5 minutes at 650 deg C. These bicyclic compounds are a class of materials with neurotoxic properties which produce convulsive seizures in test animals. The formation of these compounds does not occur, for example, in the presence of a pentaerythritol base (another common component of synthetic lubricants).

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs.

Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

CARE: Water in contact with heated material may cause foaming or a steam explosion with possible severe burns from wide scattering of hot material. Resultant overflow of containers may result in fire.

- **X** Must not be stored together
- 0 May be stored together with specific preventions
- May be stored together

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	naphtha petroleum, heavy, hydrotreated	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	paraffinic distillate, heavy, hydrotreated (severe)	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
naphtha petroleum, heavy,	Naphtha, hydrotreated heavy; (Isopar L-rev 2)	350	1,800	40,000
hydrotreated		mg/m3	mg/m3	mg/m3
xylene	Xylenes	Not Available	Not Available	Not Available
paraffinic distillate, heavy,	Mineral oil, heavy or light; (paraffin oil; Deobase, deodorized; heavy paraffinic; heavy naphthenic); distillates; includes 64741-53-3, 64741-88-4, 8042-47-5, 8012-95-1; 64742-54-7	140	1,500	8,900
hydrotreated (severe)		mg/m3	mg/m3	mg/m3

Ingredient	Original IDLH	Revised IDLH
naphtha petroleum, heavy, hydrotreated	2,500 mg/m3	Not Available
copper 8-quinolinol	Not Available	Not Available
xylene	900 ppm	Not Available
paraffinic distillate, heavy, hydrotreated (severe)	2,500 mg/m3	Not Available
4,5-dichloro-2-octyl-3(2H)- isothiazolone	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
copper 8-quinolinol	E	≤ 0.01 mg/m³
4,5-dichloro-2-octyl-3(2H)- isothiazolone	Ε	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel

Toxicity and Irritation data for petroleum-based mineral oils are related to chemical components and vary as does the composition and source of the original crude. A small but definite risk of occupational skin cancer occurs in workers exposed to persistent skin contamination by oils over a period of years. This risk has been attributed to the presence of certain polycyclic aromatic hydrocarbons (PAH) (typified by benz[a]pyrene).

Petroleum oils which are solvent refined/extracted or severely hydrotreated, contain very low concentrations of both.

CEL TWA: 0.1 mg/m3; STEL 0.3 mg/m3 total isothiazolinones (Rohm and Haas)

(CEL = Chemwatch Exposure Limit)

for xylenes:

IDLH Level: 900 ppm

Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition)

NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response). Xylene vapour is an irritant to the eyes, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce intoxication and unconsciousness also produces transient liver and kidney toxicity. Neurologic impairment is NOT evident amongst volunteers inhaling up to 400 ppm though complaints of ocular and upper respiratory tract irritation occur at 200 ppm for 3 to 5 minutes.

Exposure to xylene at or below the recommended TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An earlier skin notation was deleted because percutaneous absorption is gradual and protracted and does not substantially contribute to the dose

received by inhalation. Odour Safety Factor(OSF) OSF=4 (XYLENE)

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

NOTE L: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 3% DMSO extract as measured by IP 346. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

	Engineering controls are used to remove a hazard or place engineering controls can be highly effective in protecting w provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job acti Enclosure and/or isolation of emission source which keeps that strategically "adds" and "removes" air in the work envit designed properly. The design of a ventilation system must Employers may need to use multiple types of controls to pr General exhaust is adequate under normal operating cond circumstances. If risk of overexposure exists, wear approve Provide adequate ventilation in warehouse or closed storag varying "escape" velocities which, in turn, determine the "c the contaminant.	orkers and will typically be independent of worker ivity or process is done to reduce the risk. a selected hazard "physically" away from the wo ronment. Ventilation can remove or dilute an air of t match the particular process and chemical or co revent employee overexposure. itions. Local exhaust ventilation may be required ed respirator. Correct fit is essential to obtain ade ge areas. Air contaminants generated in the work	r interactions to orker and ventilation contaminant if ontaminant in use. in specific equate protection. splace possess
	Type of Contaminant:		Air Speed:
	solvent, vapours, degreasing etc., evaporating from tank	(in still air).	0.25-0.5 m/s (50-100 f/min)
Appropriate engineering	aerosols, fumes from pouring operations, intermittent con welding, spray drift, plating acid fumes, pickling (released	0.5-1 m/s (100-200 f/min.)	
controls	direct spray, spray painting in shallow booths, drum filling, (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)	
	grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).		2.5-10 m/s (500-2000 f/min.)
	 Within each range the appropriate value depends on: Lower end of the range 1: Room air currents minimal or favourable to capture 2: Contaminants of low toxicity or of nuisance value only. 3: Intermittent, low production. 4: Large hood or large air mass in motion Simple theory shows that air velocity falls rapidly with distar generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after referer extraction fan, for example, should be a minimum of 1-2 m meters distant from the extraction point. Other mechanical apparatus, make it essential that theoretical air velocities a installed or used. 	extraction point (in simple cases). Therefore the a rence to distance from the contaminating source. /s (200-400 f/min) for extraction of solvents gene considerations, producing performance deficits v	ir speed at the The air velocity at the rated in a tank 2 vithin the extraction
Personal protection			
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact document, describing the wearing of lenses or restriction include a review of lens absorption and adsorption for the Modical and first aid porsonnel should be trained in the second seco	ons on use, should be created for each workplace the class of chemicals in use and an account of in	e or task. This should njury experience.

document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Page 10 of 27

Skin protection	See Hand protection below
Hands/feet protection	 Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated learber items, such as shoes, belts and watch-bands should be removed and destroyed. The sateletion of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be vashed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact. chemical resistance of glove material, glove thickness and dexientity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.10 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considerin
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

CUTEK Extreme CD50

Material	CPI
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum	Half-Face	Full-Face	Powered Air
Protection Factor	Respirator	Respirator	Respirator
	A-AUS		A-PAPR-AUS /
up to 10 x ES	A-AUS	-	Class 1

NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
TEFLON	С
VITON	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis,

factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance Not Available

up to 50 x ES	-	A-AUS / Class	
		1	
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Appearance			
		Relative density (Water =	
Physical state	Liquid	1)	0.87
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	73	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Combustible.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Refer TDS

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation for measures be used in an occupational setting. Inhalation for accordination and vertigo. Inhalation hazard is increased at higher temperatures. High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of mucous merbranes, incordination, giddiness, nausea, vertigo, condusion, headdenk, appetite loss, drowiness, tremors and anaesthetic stupor. Massive exposures may produce cancia and/or apnocis anoxia may produce for exposure and an easthetic stupor. Massive exposures may produce cancian and/or apnocia anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorthage of local post-inflammatory scaring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemicals. Levidora previous consultations. Liquid paraffins may produce epileptiform seizures and deethres. Altenses produce kidely and neurotoxic effects. Pulmoany iritration or unconsciousness, convulsions and dettins. Altenses produce kidely and neurotoxic effects. Pulmoany iritration are unconsciousness. Convulsions and dettines. Jaca derigo are exposure may produce inebriation or unconsciousness. Convulsions and dettins. Altenses produce kidely and neurotoxic effects. Pulmoany iritration or unconsciousness. Convulsions and dettins. Altense produce kidely and neurotoxic effects. Pulmoany iritration, nonas predice yapproduce inebriation or u
	renal abnormalities have been found in refinery workers exposed to hydrocarbons. When evaluated for developmental toxicity in rats, isoparaffins were neither embryotoxic nor teratogenic. Isoparaffins were consistently negative on standard bacterial genotoxicity assays. They were also non-genotoxic in <i>in vivo</i> mammalian testing for somatic or germ cell mutations (mouse micronucleus test and rat dominant lethal assay, respectively). Mullin et al: Jnl Applied Toxicology 10, pp 136-142, 2006 Organic phosphates are chemically the most stable and thus the most persistent phosphorus esters in biological systems. As a
	result they may constitute a hazardous class of material. A study of general physiological properties of organic phosphates revealed groups of toxic effects. These effects range from severe to undetectable and include: h nervous system stimulation or convulsive effects with anaesthetic-like actions,

	 organic damage to the central nervous system (with secondary, flaccid or spastic paralysis), weak true or mainly pseudocholinesterase-inhibiting effects, irritation to dermal or respiratory system surfaces.
	Because certain members of this group are used extensively as insecticides and produce neurotoxic effects in man, concerns are often raised in reference to other members. The alkyl phosphates have not been shown to exhibit neurotoxic properties. Some are respiratory, eye and primary skin irritants and may be absorbed through the skin.
	Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue. Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
Ingestion	Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Accidental ingestion of the material may be damaging to the health of the individual. Many aliphatic hydrocarbons create a burning sensation because they are irritating to the GI mucosa. Vomiting has been reported in up to one third of all hydrocarbon exposures. While most aliphatic hydrocarbons have little GI absorption, aspiration frequently occurs, either initially or in a semi-delayed fashion as the patient coughs or vomits, thereby resulting in pulmonary effects. Once aspirated, the hydrocarbons - isoalkanes- (after 18-24 hours fasting) showed lethargy and/or general weakness, ataxia and diarrhoea. Symptoms disappeared within 24-28 hours. Isothiazolinones are moderately to highly toxic by oral administration. The major signs of toxicity were severe gastric irritation, lethargy, and ataxia Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage.
Skin Contact	Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Dermally, isoparaffins have produced slight to moderate irritation in animals and humans under occluded patch conditions where evaporation cannot freely occur. However, they are not irritating in non-occluded tests, which are a more realistic simulation of human exposure. They have not been found to be sensitisers in guinea pig or human patch testing. However, occasional rare idiosyncratic sensitization reactions in humans have been reported. Aqueous solutions of isothiazolinones may be irritating or even corrosive depending on concentration. Solutions containing more than 0.5% (5000 ppm active substance) may produce severe irritation of human skin whilst solutions containing more than 100 ppm may irritate the skin.
Eye	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Instillation of isoparaffins into rabbit eyes produces only slight irritation.

Solutions containing isothiazolinones may produce corrosion of the mucous membranes and cornea. Instillation of 0.1 ml of an aqueous solution containing 560 ppm isothiazolinone into rabbit eye did not produce irritation whereas concentrations, typically around 3% and 5.5 %, were severely irritating or corrosive to the eye.. Symptoms included clouding of the cornea, chemosis and swelling of the eyelids.

Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in impaired fertility on the basis of: - clear evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Principal route of exposure is by skin contact; lesser exposures include inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact with mineral oils carries with it the risk of skin conditions such as oil folliculitis, eczematous dermatitis, pigmentation of the face (melanosis) and warts on the sole of the foot (plantar warts). With highly refined mineral oils no appreciable systemic effects appear to result through skin absorption.

Exposure to oil mists frequently elicits respiratory conditions, such as asthma; the provoking agent is probably an additive. High oil mist concentrations may produce lipoid pneumonia although clinical evidence is equivocal. In animals exposed to concentrations of 100 mg/m3 oil mist, for periods of 12 to 26 months, the activity of lung and serum alkaline phosphatase enzyme was raised; 5 mg/m3 oil mist did not produce this response. These enzyme changes are sensitive early indicators of lung damage. Workers exposed to vapours of mineral oil and kerosene for 5 to 35 years showed an increased prevalence of slight basal lung fibrosis.

Many studies have linked cancers of the skin and scrotum with mineral oil exposure. Contaminants in the form of additives and the polycyclic aromatic hydrocarbons (PAHs - as in the crude base stock) are probably responsible. PAH levels are higher in aromatic process oils/used/reclaimed motor oils. Subchronic 90-day feeding studies conducted on male and female rats on highly refined white mineral oils and waxes found that higher molecular-weight hydrocarbons (microcrystalline waxes and the higher viscosity oils) were without biological effects. Paraffin waxes and low- to mid viscosity oils produced biological effects that were inversely proportional to molecular weight, viscosity and melting point: oil-type and processing did not appear to be determinants. Biological effects were more pronounced in females than in males. Effects occurred mainly in the liver and mesenteric lymph nodes and included increased organ weights, microscopic inflammatory changes, and evidence for the presence of saturated mineral hydrocarbons in affected tissues. Inflammation of the cardiac mitral valve was also observed at high doses in rats treated with paraffin waxes.

Smith J.H., et al: Toxicologic Pathology: 24, 2, 214-230, 1996

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies:

Chronic

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human.

Repeated application of mildly hydrotreated oils (principally paraffinic), to mouse skin, induced skin tumours; no tumours were induced with severely hydrotreated oils.

The isothiazolinones are known contact sensitisers. Data are presented which demonstrate that, in comparison with the chlorinated and dichlorinated compounds which share immunological cross-reactivity, the non-chlorinated isothiazolinones have a lower potential for sensitization and no documented immunological cross-reaction with the chlorinated isothiazolinones. The risk of sensitization depends on how contact with the product occurs. The risk is greater when the skin barrier has been damaged and smaller when the skin is healthy. Dermatological studies have demonstrated that mixed isothiazolinone concentrations below 20 ppm may cause sensitisation and that allergic reactions can be provoked in sensitized persons even with concentrations in the range of 7-15 ppm active isothiazolinones.

The isothiazolinones are a group of heterocyclic sulfur-containing compounds. In general all are electrophilic molecules containing an activated N-S bond that enables them with nucleophilic cell entities, thus exerting biocidal activity. A vinyl activated chlorine atom makes allows to molecule to exert greater antimicrobial efficiency but at the same time produces a greater potential for sensitisation.

Several conclusions relating to the sensitising characteristics of the isothiazolinones may therefore be drawn* :

- The strongest sensitisers are the chlorinated isothiazolinones.
- ▶ There are known immunological cross-reactions between at least 2 different chlorinated isothiazolinones.
- There appears to be no immunological cross reaction between non-chlorinated isothiazolinones and chlorinated isothiazolinones.
- Although classified as sensitisers, the nonchlorinated isothiazolinones are considerably less potent sensitisers than are the chlorinated isothiazolinones.
- By avoiding the use of chlorinated isothiazolinones, the potential to induce sensitisation is greatly reduced.
- Despite a significant percentage of the population having been previously sensitised to chlorinated and non-chlorinated species, it is likely that careful and judicious use of non-chlorinated isothiazolinones will result in reduced risk of allergic reactions in those persons.
- Although presently available data promise that several non-chlorinated isothiazolinones will offer effective antimicrobial protection in industrial and personal care products, it is only with the passage of time that proof of their safety in use or otherwise will become available.
- * B.R. Alexander: Contact Dermatitis 2002, 46, pp 191-196

Although there have been conflicting reports in the literature, it has been reported by several investigators that isothiazolinones are mutagenic in *Salmonella typhimurium* strains (Ames test). Negative results were obtained in studies of the DNA-damaging potential of mixed isothiazolinones (Kathon) in mammalian cells *in vitro* and of cytogenetic effects and DNA-binding *in vivo*. The addition of rat liver S-9 (metabolic activation) reduced toxicity but did not eliminate mutagenicity. These compounds bind to the proteins in the S-9. At higher concentrations of Kathon the increase in mutagenicity may be due to an excess of unbound active compounds.

A study of cutaneous application of Kathon CG in 30 months, three times per week at a concentration of 400 ppm (0.04%) a.i. had no local or systemic tumourigenic effect in male mice. No dermal or systemic carcinogenic potential was observed. Reproduction and teratogenicity studies with rats, given isothiazolinone doses of 1.4-14 mg/kg/day orally from day 6 to day 15 of gestation, showed no treatment related effects in either the dams or in the foetuses

Steam-cracked residues produced an increased incidence of skin tumours after repeated applications to the skin of mice. Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers.

Xylene has been classed as a developmental toxin in some jurisdictions.

Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.

CUTEK Extreme CD50	TOXICITY Not Available	IRRITATION Not Available	
naphtha petroleum, heavy, hydrotreated	TOXICITY Dermal (rabbit) LD50: >1900 mg/kg ^[1]	IRRITATION Eye: no adverse effect observed (not irritating) ^[1]	
	Inhalation(Rat) LC50; 8.5 mg/L4hrs ^[2]	Skin: adverse effect observed (intritating) ^[1]	
	Oral(Rat) LD50; >4500 mg/kg ^[1]		

copper 8-quinolinol	ΤΟΧΙCITY	IRRITATION	
	Dermal (rabbit) LD50: >0.002 mg/kg ^[2]	Not Available	
	Oral(Mouse) LD50; 3940 mg/kg ^[2]		
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant	
	Inhalation(Rat) LC50; 5922 ppm4hrs ^[1]	Eye (rabbit): 5 mg/24h SEVERE	
xylene	Oral(Rat) LD50; 8.70 mg/kg ^[1]	Eye (rabbit): 87 mg mild	
		Eye: adverse effect observed (irritating) ^[1]	
		Skin (rabbit):500 mg/24h moderate	
		Skin: adverse effect observed (irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
paraffinic distillate, heavy,	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
hydrotreated (severe)	Inhalation(Rat) LC50; =2.18 mg/l4hrs ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral(Rat) LD50; >5000 mg/kg ^[2]		
4,5-dichloro-2-octyl-3(2H)-	TOXICITY	IRRITATION	
isothiazolone	Inhalation(Rat) LC50; 0.758 mg/L4hrs ^[2]	Not Available	
Legend:	 Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances 		

	effects in rats at the highest dose tested (225 mg/kg/day). No significant effects on reproduction were seen in rats with an oral OECD 422 combined repeat dose toxicity and reproductive/developmental toxicity screen with dibutyl hydrogen phosphate (NOAEL = 1000 mg/kg). Reproductive effects were reported in rats at 300 mg/kg/day and 600 mg/kg/day in a one generation study with 2-ethylhexanoic acid. Developmental toxicity : The developmental toxicity of tributyl phosphate was evaluated in both rats and rabbits. Tributyl phosphate and triisobutyl phosphate were determined not to be teratogenic. 2-Ethylhexanol was found to cause developmental toxicity only at doses that were maternally toxic. Drinking water and gavage developmental toxicity studies have also been conducted with 2-ethylhexanoic acid in rats and rabbits. Developmental effects in rats at concentrations as low as 100 mg/kg administered in drinking water have been reported. Developmental studies with rats and rabbits concluded that 2-ethylhexanoic acid did not produce developmental effects in rats or rabbits under the conditions of these tests. The authors noted that the rat NOAEL was 100 mg/kg/day based on slight foetotoxicity at 250 mg/kg/day and that the rabbit NOAEL was 250 mg/kg/day (highest dose). The maternal NOAEL's for rats and rabbits were 250 mg/kg/day and 25 mg/kg/day, respectively.
NAPHTHA PETROLEUM, HEAVY, HYDROTREATED	for petroleum: Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage (so-called Petrol Sniffer's Encephalopathy), delirium, seizures, and sudden death have been reported from repeated overexposure to some hydrocarbon solvents, naphthas, and gasoline This product may contain benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents Carcinogenicity : Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results in mutagenicity asays. Reproductive Toxicity : Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed. Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a co
COPPER 8-QUINOLINOL	Equivocal tumourigen by RTECS criteria Animal tests record Flaccid paralysis, convulsions, dyspnae; with tumours at site of application
XYLENE	Reproductive effector in rats The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.
4,5-DICHLORO-2-OCTYL- 3(2H)-ISOTHIAZOLONE	Guinea Pig Assay: causes sensitisation * Did not show teratogenic effects in animal experiments. * Not mutagenic * *Rohm and Haas MSDS Rozone 2000 Mildewcide
CUTEK Extreme CD50 & 4,5-DICHLORO-2-OCTYL- 3(2H)-ISOTHIAZOLONE	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.
CUTEK Extreme CD50 & NAPHTHA PETROLEUM, HEAVY, HYDROTREATED	Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial

biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipos	se tissue, or in the
CUTER Extreme CDP3 PARAFENIC DISTLATE REVENUES CONTRACT REVENUES C	nical perspectives; the oil has of processing. cesses are olvent extraction e largest variation and severely desirable base oils have a nd carcinogenicity mponents or the ve shown that a cound (PAC) of the cant Base Oils). method). on 7 CASs from the VE studies based nuclei indicated n the OLBO s. CONCAWE tests ment process l irritation and a avy test) on rabbit emic effects defined then administered city was observed, erse effect on serum chemistry nt in the adrenals, NOAEL for the test mg/kg/day) in an mental NOAEL for was exhibited as ght (125 mg/kg/day al reproductive c extract (DAE) was oetal body weights. ough 12, cleft effect of DAE. category 2; H361d

	intestine is related to carbon chain length; hydrocarbons with smaller chain length are more readily absorbed than hydrocarbon with a longer chain length. The majority of an oral dose of mineral hydrocarbon is not absorbed and is excreted unchanged in				
			-		
	the faeces. Distribution of mineral hydrocarbons following absorption has been observed in liver, fat, kidney, brain and spleen. Excretion of absorbed mineral hydrocarbons occurs via the faeces and urine. Based on the pharmacokinetic parameters and				
	disposition profiles, the data indicate inherent str	rain differences in the total syster	nic exposure (~4 fold greater systemic dose in		
	F344 vs SD rats), rate of metabolism, and hepat		-		
	different strain sensitivities to the formation of liver granulomas and MLN histiocytosis.				
	Highly and Severely Refined Distillate Base Oils				
	Acute toxicity: Multiple studies of the acute toxi				
	crude source or the method or extent of process LD50s have ranged from >2 to >5g/kg (bw). The	-			
	When tested for skin and eye irritation, the mater				
	Testing in guinea pigs for sensitization has been	negative			
	Repeat dose toxicity: . Several studies have be		-		
	highly & severely refined base oils support the processing it receives. Adverse effects have bee				
	depend on animal species and/ or the peculiariti				
	The granulomatous lesions induced by the o	ral administration of white oils are	e essentially foreign body responses. The		
	lesions occur only in rats, of which the Fisch				
	The testicular effects seen in rabbits after de single study and may have been related to s				
	 The accumulation of foamy macrophages in 				
	highly to severely refined base oils is not uni				
	materials.				
	Reproductive and developmental toxicity: A l reproduction study. The study was conducted ac		-		
	mating indices in either males or females. At neo	-	-		
	were considered normal by the study's authors.				
	A single generation study in which a white miner		-		
	is reported. Two separate groups of pregnant rate through 19 of gestation. In one of the two base of				
	study authors considered these malformations to		-		
	Genotoxicity:				
	In vitro (mutagenicity): Several studies have repo	-			
	Ames assay Base oils with no or low concentrat	-			
	<i>In vivo</i> (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test materials were administered via gavage at dose levels ranging from 500 to 5000 mg/kg (bw). Dosing occurred for either a single day or for five consecutive days. None of the base oils produced a significant				
	increase in aberrant cells. Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally.				
	Carcinogenicity. Flightly & severely feinieu base	e ons are not carcinogens, when			
	Asthma-like symptoms may continue for months	or even years after exposure to	the material ceases. This may be due to a		
	non-allergenic condition known as reactive airwa		,		
	levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented				
COPPER 8-QUINOLINOL & 4,5-DICHLORO-2-OCTYL-	exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial				
3(2H)-ISOTHIAZOLONE	hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have				
	also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the				
	other hand, is a disorder that occurs as result of		.		
	nature) and is completely reversible after exposit				
	production.				
COPPER 8-QUINOLINOL &	The share sh				
XYLENE & PARAFFINIC DISTILLATE, HEAVY,	The substance is classified by IARC as Group 3 NOT classifiable as to its carcinogenicity to hum				
HYDROTREATED					
(SEVERE)		-			
Acute Toxicity	×	Carcinogenicity	×		
Skin Irritation/Corrosion	×	Reproductivity	×		
Serious Eye	¥	STOT - Single Experies	*		
Damage/Irritation	•	STOT - Single Exposure	•		
Respiratory or Skin	¥	STOT - Repeated Exposure	×		
sensitisation Mutagenicity	×	Aspiration Hazard	✓		
wutagenicity		Aspiration Hazard	•		

X – Data either not available or does not fill the criteria for classification Legend: Data available to make classification

SECTION 12 Ecological information

CUTEK Extreme CD50	Endpoint	Test Duration (hr)		Species		Value	Source
	Not Available	Not Available		Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)		Species		Value	Source
	LC50	96		Fish		4.1mg/L	2
aphtha petroleum, heavy, hydrotreated	EC50	48 Crustacea			4.5mg/L	2	
nyurotreateu	EC50	72		Algae or other aquat	Algae or other aquatic plants 3.1mg/L		2
	NOEL	72		Algae or other aquat	ic plants	0.1mg/L	2
	Endpoint	Test Duration (hr)	s	pecies	V	/alue	Sourc
	LC50	96	F	sh	-(0.0062-0.0113mg/L	4
	EC50	48	С	rustacea	-(0.132-0.203mg/L	4
copper 8-quinolinol	EC50	72	A	gae or other aquatic plar	nts O).046-mg/L	4
	EC100	240	A	gae or other aquatic plar	nts O).1-mg/L	4
	NOEL	120	A	gae or other aquatic plar	nts <	:0.0007-mg/L	4
	Endpoint	Test Duration (hr)		Species		Value	Sourc
	LC50	96 Fish		ish 0.00		0.0013404-mg/L	4
xylene	EC50	48		Crustacea		1.8mg/L	2
	EC50	72		Algae or other aquatic pl	ants	3.2mg/L	2
	NOEL	72		Not Available		0.01-mg/L	4
	Endpoint	Test Duration (hr)	Test Duration (hr) Species			Value	Sourc
	LC50	96		Fish		>100mg/L	2
paraffinic distillate, heavy, hydrotreated (severe)	EC50	48 C		Crustacea		>1000mg/L	1
	EC50	96		Algae or other aquatic plants		>1000mg/L	1
	NOEC	504		Crustacea		>1mg/L	1
	Endpoint	Test Duration (hr)	Specie	S	Value		Sourc
	LC50	96	Fish		-0.0018-0.0033mg/L		4
	EC50	48	Crustacea		0.001mg/L		4
l,5-dichloro-2-octyl-3(2H)- isothiazolone	EC50	96	Algae	or other aquatic plants	-0.0024-0.0097mg/L		4
isotniazoione	BCF	168 Not Available		0.0044-mg/L		4	
	EC10	72	Algae	or other aquatic plants	-0.00620906-0.01016028mg/L		4
	NOEC	2328	Fish		0.00056-mg	g/L	4
Legend:	3. EPIWIN Sı	n 1. IUCLID Toxicity Data 2. iite V3.12 (QSAR) - Aquatic iatic Hazard Assessment Da	Toxicity Data (I	stimated) 4. US EPA, Ec	otox database	- Aquatic Toxicity Da	ata 5.

Harmful to aquatic organisms.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

+ drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility

Iethal effects on fish by coating gill surfaces, preventing respiration

* asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and

+ adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation.

For aromatic hydrocarbons:

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus

aztecus) was dimethylnaphthalenes > methylnaphthalenes > naphthalenes.

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene.

The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthracene is a phototoxic PAH . UV light greatly increases the toxicity of anthracene to bluegill sunfish. . Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

Volatile furandiones and aldehydes are significant atmospheric oxidation products of aromatic compounds. Highly acidic dicarboxylic acids produced by the reactions between furandiones and water were shown to rapidly acidify an aqueous phase

When released in the environment, alkanes don't undergo rapid biodegradation, because they have no functional groups (like hydroxyl or carbonyl) that are needed by most organisms in order to metabolize the compound.

However, some bacteria can metabolise some alkanes (especially those linear and short), by oxidizing the terminal carbon atom. The product is an alcohol, that could be next oxidised to an aldehyde, and finally to a carboxylic acid. The resulting fatty acid could be metabolised through the fatty acid degradation pathway. For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons. Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

(1) n-alkanes, especially in the C10–C25 range, which are degraded readily;

(2) isoalkanes;

(3) alkenes;

(4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);

(5) monoaromatics;

(6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and

(7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however.

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish

Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids

was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L.was determined

The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species . The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L.

Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For xylenes : log Koc : 2.05-3.08 Koc : 25.4-204 Half-life (hr) air : 0.24-42 Half-life (hr) H2O surface water : 24-672 Half-life (hr) H2O ground : 336-8640 Half-life (hr) soil : 52-672 Henry's Pa m3 /mol: 637-879 Henry's Atm m3 /mol: 7.68E-03 BOD 5 if unstated: 1.4,1% COD : 2.56,13% ThOD : 3.125 BCF : 23 log BCF : 1.17-2.41 Environmental Este

Environmental Fate

Terrestrial fate:: Measured Koc values of 166 and 182, indicate that 3-xylene is expected to have moderate mobility in soil. Volatilisation of p-xylene is expected to be important from moist soil surfaces given a measured Henry's Law constant of 7.18x10-3 atm-cu m/mole. The potential for volatilisation of 3-xylene from dry soil surfaces may exist based on a measured vapor pressure of 8.29 mm Hg. p-Xylene may be degraded during its passage through soil). The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. p-Xylene, present in soil samples contaminated with jet fuel, was completely degraded aerobically within 5 days. In aquifer studies under anaerobic conditions, p-xylene was degraded, usually within several weeks, with the production of 3-methylbenzylfumaric acid, 3-methylbenzylsuccinic acid, 3-methylbenzadehyde as metabolites.

Aquatic fate: Koc values indicate that p-xylene may adsorb to suspended solids and sediment in water. p-Xylene is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. BCF values of 14.8, 23.4, and 6, measured in goldfish, eels, and clams, respectively, indicate that bioconcentration in aquatic organisms is low. p-Xylene in water with added humic substances was 50% degraded following 3 hours irradiation suggesting that indirect photooxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. Although p-xylene is biodegradable and has been observed to degrade in pond water, there are insufficient data to assess the rate of this process in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater in several studies; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high.

Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere primarily by reaction with photochemically-produced hydroxyl radicals, with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylenes' susceptibility to photochemical oxidation in the troposphere is to the extent that they may contribute to photochemical smog formation.

According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and from its vapour pressure, p-xylene, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase p-xylene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 16 hours. A half-life of 1.0 hr in summer and 10 hr in winter was measured for the reaction of p-xylene with photochemically-produced hydroxyl radicals. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers, with loss rates varying from 9-42% per hr. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Ecotoxicity: for xylenes

Fish LC50 (96 h) Pimephales promelas 13.4 mg/l; Oncorhyncus mykiss 8.05 mg/l; Lepomis macrochirus 16.1 mg/l (all flow through values); Pimephales promelas 26.7 (static)

Daphnia EC50 948 h): 3.83 mg/l Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/l Gammarus lacustris LC50 (48 h): 0.6 mg/l

for alkyl esters of phosphoric acid:

Environmental fate:

The physicochemical properties and environmental fate of the chemicals in this category are similar. They have a low melting point, a high boiling point or decomposition temperature, and low vapor pressure. The tri-esters are slightly soluble and the others are moderately soluble to soluble in water. The results of the hydrolysis studies with 2-ethylhexyl phosphate (CAS RN: 12645-31-7), and triisobutyl phosphate (CAS RN: 126-71-6), and tributyl phosphate (CAS RN: 126-73-8) indicate that the mono-, di-, and tri-esters all are hydrolytically stable. Fugacity Level III calculations indicate that if they are released into the environment, they will

exist predominantly in the soil and/ or soil or the aquatic environment depending on the environmental compartment that they first contact. The log Kow, indicates that they will not bioconcentrate. They exhibit appreciable biodegradation in 28 days or sooner indicating that they are moderately degradable if soluble and will not persist in the environment Tris(2-ethylhexyl) phosphate, which has limited solubility in water, exhibited 0% biodegradation after 28 days in the OECD 301D closed bottle test.

Biodegradation of phosphoric acid esters involves stepwise hydrolysis to ortho-phosphate and alcohol moieties. The alcohol would then be expected to undergo further degradation

Ecotoxicity:

Studies of the ecotoxicity of the chemicals in this category indicate that none of the members are highly toxic to aquatic species. The fish 96-hour LC50 values ranged from >500 mg/l in *0. Iatipes* and >100 mg/l in *0. mykiss for 2-ethylhexyl phosphate to 23 mg/l in <i>0. mykiss* for triisobutyl phosphate. The invertebrate 48-hour ECso values with Daphnia ranged from 110 mg/l for 2-ethylhexyl phosphate to 11 mg/l for triisobutyl phosphate. The algal 96-hour EC50 values ranged from 4.4 mg/l with tributyl phosphate in *S. capricornutum* and to 161 mg/l with 2-ethylhexylphosphate in *S. capricornutum*. The isothiazolinones are very toxic to marine organisms (fish, Daphnia magna and algae)

The high water solubility and low log Kow values of several chlorinated and non-chlorinated indicate a low potential for bioaccumulation.

Studies of 5-chloro-2-methyl-4-isothiazolin-3-one (CMI) in bluegill sunfish (Lepornis machrochirus) show BCF values of 102, 114 and 67 at nominal concentrations of 0.02, 0.12 and 0.8 mg/l. The BCF for 2-methyl-4-isothiazolin-3-one (MI) was determined at 2.3 at a nominal concentration of 0.12 mg/l

Primary biodegradation of MI and CMI occurred with half-lives of less than 24 hours in aerobic and anoxic sediments, and within a period of less than one week the parent compounds were depleted to very low levels that could not be clearly distinguished from analytical artifacts. The ultimate aerobic biodegradability of both MI and CMI attained levels of > 55% within 29 days. Furthermore, the proposed metabolites of MI and CMI are considered to have a low aquatic toxicity on the basis of QSAR estimates and the measured toxicity of the structurally related N-(n-octyl) malonamic acid.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
copper 8-quinolinol	HIGH	HIGH
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
4,5-dichloro-2-octyl-3(2H)- isothiazolone	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation	
copper 8-quinolinol LOW (LogKOW = 0.5382)		
xylene	MEDIUM (BCF = 740)	
4,5-dichloro-2-octyl-3(2H)- isothiazolone	HIGH (LogKOW = 4.7295)	

Mobility in soil

Ingredient	Mobility
copper 8-quinolinol	LOW (KOC = 4649000)
4,5-dichloro-2-octyl-3(2H)- isothiazolone	LOW (KOC = 5796)

SECTION 13 Disposal considerations

Waste treatment methods

	-
Product / Packaging disposal	 Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible. Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Reduction Reuse Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning or process equipment to enter drains.
It may be necessary to collect all wash water for treatment before disposal.
In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
Where in doubt contact the responsible authority.
Recycle wherever possible or consult manufacturer for recycling options.
Consult State Land Waste Authority for disposal.
Bury or incinerate residue at an approved site.
Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	•3Z

Land transport (ADG)

UN number	3082	3082		
UN proper shipping name	ENVIRONMENTALLY	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains copper 8-quinolinol)		
Transport hazard class(es)	Class 9 Subrisk Not Applicable			
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions Limited quantity	274 331 335 375 AU01 5 L		

Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082

are not subject to this Code when transported by road or rail in;

(a) packagings;

(b) IBCs; or

(c) any other receptacle not exceeding 500 kg(L).

- Australian Special Provisions (SP AU01) - ADG Code 7th Ed.

Air transport (ICAO-IATA / DGR)

UN number	3082		
UN proper shipping name	Environmentally hazardo	ous substance, liquid, n.o.s. * (contains	copper 8-quinolinol)
	ICAO/IATA Class	9	
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable	
	ERG Code	9L	
Packing group	11		
Environmental hazard	Not Applicable		
	Special provisions		A97 A158 A197 A215
	Cargo Only Packing Instructions		964
	Cargo Only Maximum Qty / Pack		450 L
Special precautions for user	Passenger and Cargo Packing Instructions		964
usei	Passenger and Cargo Maximum Qty / Pack		450 L
	Passenger and Cargo Limited Quantity Packing Instructions		Y964
	Passenger and Cargo	Limited Maximum Qty / Pack	30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number 3082

Page 25 of 27

CUTEK Extreme CD50

UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains copper 8-quinolinol)		
Transport hazard class(es)	IMDG Class 9 IMDG Subrisk Not Applicable		
Packing group	II		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number Special provisions Limited Quantities	F-A , S-F 274 335 969 5 L	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
naphtha petroleum, heavy, hydrotreated	Not Available
phosphoric esters	Not Available
copper 8-quinolinol	Not Available
xylene	Not Available
paraffinic distillate, heavy, hydrotreated (severe)	Not Available
4,5-dichloro-2-octyl-3(2H)- isothiazolone	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
naphtha petroleum, heavy, hydrotreated	Not Available
phosphoric esters	Not Available
copper 8-quinolinol	Not Available
xylene	Not Available
paraffinic distillate, heavy, hydrotreated (severe)	Not Available
4,5-dichloro-2-octyl-3(2H)- isothiazolone	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

naphtha petroleum, heavy, hydrotreated is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australian Inventory of Industrial Chemicals (AIIC)
Chemical Footprint Project - Chemicals of High Concern List
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
copper 8-quinolinol is found on the following regulatory lists
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6
Australian Inventory of Industrial Chemicals (AIIC)
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
xylene is found on the following regulatory lists
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

paraffinic distillate, heavy, hydrotreated (severe) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

4,5-dichloro-2-octyl-3(2H)-isothiazolone is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	No (copper 8-quinolinol; 4,5-dichloro-2-octyl-3(2H)-isothiazolone)
Canada - NDSL	No (naphtha petroleum, heavy, hydrotreated; phosphoric esters; xylene; paraffinic distillate, heavy, hydrotreated (severe))
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (naphtha petroleum, heavy, hydrotreated)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (phosphoric esters)
Vietnam - NCI	Yes
Russia - ARIPS	No (copper 8-quinolinol; 4,5-dichloro-2-octyl-3(2H)-isothiazolone)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	09/02/2021
Initial Date	27/05/2020

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit_\circ

IDLH: Immediately Dangerous to Life or Health Concentrations

- OSF: Odour Safety Factor
- NOAEL :No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value

LOD: Limit Of Detection

IARC: International Agency for Research on Cancer

Page 27 of 27

CUTEK Extreme CD50

Issue Date: 09/02/2021 Print Date: 09/02/2021

OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.