Mirotone Chemwatch: **43-4470**Version No: **5.1** Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements ## Chemwatch Hazard Alert Code: 2 Issue Date: **10/12/2021**Print Date: **17/01/2022**L.GHS.AUS.EN ## SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | POLYCURE 3920 Higrip Additive | | |-------------------------------|--|--| | Chemical Name | ot Applicable | | | Synonyms | t Available | | | Proper shipping name | NT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED
TERIAL (including paint thinning or reducing compound) | | | Chemical formula | Not Applicable | | | Other means of identification | Not Available | | ## Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | For full details on application and properties consult the technical datasheet. An additive to increase the surface grip of Polycure | |--------------------------|--| | | floor coatings. | ## Details of the supplier of the safety data sheet | Registered company name | Mirotone | | |-------------------------|--|--| | Address | 1 Marigold Street Revesby NSW 2212 Australia | | | Telephone | 1 2 9795 3700 | | | Fax | r61 2 9771 3601 | | | Website | www.mirotone.com, www.polycure.com.au | | | Email | Not Available | | ## **Emergency telephone number** | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE | | |-----------------------------------|------------------------------|--| | Emergency telephone numbers | +61 1800 951 288 | | | Other emergency telephone numbers | +61 2 9186 1132 | | Once connected and if the message is not in your prefered language then please dial 01 ## **SECTION 2 Hazards identification** ## Classification of the substance or mixture | Poisons Schedule | Not Applicable | | | |--------------------|---|--|--| | Classification [1] | Flammable Liquids Category 3, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Carcinogenicity Category 2 | | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -
Annex VI | | | ## Label elements | Cianal ward | Mornino | |-------------|---------| | Signal word | Warning | ## Hazard statement(s) | H226 | Flammable liquid and vapour. | | |------|------------------------------------|--| | H315 | auses skin irritation. | | | H319 | auses serious eye irritation. | | | H336 | May cause drowsiness or dizziness. | | | H351 | Suspected of causing cancer. | | ## Precautionary statement(s) Prevention | P201 Obtain special instructions before use. P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P271 Use only outdoors or in a well-ventilated area. P280 Wear protective gloves, protective clothing, eye protection and face protection. P240 Ground and bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. P264 Wash all exposed external body areas thoroughly after handling. | | • | | | |---|------|--|--|--| | P271 Use only outdoors or in a well-ventilated area. P280 Wear protective gloves, protective clothing, eye protection and face protection. P240 Ground and bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P201 | Obtain special instructions before use. | | | | P280 Wear protective gloves, protective clothing, eye protection and face protection. P240 Ground and bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P210 | ep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | | | P240 Ground and bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P271 | e only outdoors or in a well-ventilated area. | | | | P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P280 | r protective gloves, protective clothing, eye protection and face protection. | | | | P242 Use non-sparking tools. P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P240 | ound and bond container and receiving equipment. | | | | P243 Take action to prevent static discharges. P261 Avoid breathing mist/vapours/spray. | P241 | se explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | | P261 Avoid breathing mist/vapours/spray. | P242 | Jse non-sparking tools. | | | | | P243 | Take action to prevent static discharges. | | | | P264 Wash all exposed external body areas thoroughly after handling. | P261 | vvoid breathing mist/vapours/spray. | | | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | ## Precautionary statement(s) Response | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | | | | |----------------|---|--|--|--| | P370+P378 | n case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | | | | P305+P351+P338 | IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | P312 | l a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | | | P337+P313 | e irritation persists: Get medical advice/attention. | | | | | P302+P352 | ON SKIN: Wash with plenty of water. | | | | | P303+P361+P353 | F ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | | | P304+P340 | NHALED: Remove person to fresh air and keep comfortable for breathing. | | | | | P332+P313 | f skin irritation occurs: Get medical advice/attention. | | | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | | ## Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | ## Precautionary statement(s) Disposal | P501 | Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. | |--------|--| | 1 30 1 | Dispose of contents/container to authorised nazardods of special waste conection point in accordance with any local requiation. | ## **SECTION 3 Composition / information on ingredients** ## Substances See section below for composition of Mixtures ## **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|---| | 108-65-6 | 30-60 | propylene glycol monomethyl ether acetate, alpha-isomer | | 1330-20-7 | 10-30 | xylene | | 100-41-4 | 1-10 | <u>ethylbenzene</u> | | 872-50-4 | <1 | N-methyl-2-pyrrolidone | | Not Available | balance | Ingredients determined not to be hazardous | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L; * EU IOELVs available ## **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Nash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only
be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. | ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters: ## BASIC TREATMENT ----- - ▶ Establish a patent airway with suction where necessary. - ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary. - Administer oxygen by non-rebreather mask at 10 to 15 l/min. - $\mbox{\ensuremath{\,^{\blacktriangleright}}}$ Monitor and treat, where necessary, for pulmonary oedema . - ▶ Monitor and treat, where necessary, for shock. - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. - Give activated charcoal. ## ADVANCED TREATMENT _____ - ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias. - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - ▶ Drug therapy should be considered for pulmonary oedema. - ▶ Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - ► Treat seizures with diazepam. - Proparacaine hydrochloride should be used to assist eye irrigation. ## EMERGENCY DEPARTMENT Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. Issue Date: 10/12/2021 Print Date: 17/01/2022 - Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome. - Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - ▶ Pulmonary absorption is rapid with about 60-65% retained at rest. - ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. **BIOLOGICAL EXPOSURE INDEX - BEI** These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Determinant Sampling Time Comments Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift #### **SECTION 5 Firefighting measures** ## **Extinguishing media** - Alcohol stable foam. - Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. Do not use a water jet to fight fire. ### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may | Advice for firefighters | | |-------------------------|--| | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | Fire/Explosion Hazard | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. | | HAZCHEM | •3Y | ### **SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures ## **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up | Methods and material for containment and cleaning up | | | | | | | |--|---|--|--|--|--|--| | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact
with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | | | | | | | | Chemical Class: ester and ethers For release onto land: recommended sorbents listed in order of priority. SORBENT TYPE RANK APPLICATION COLLECTION LIMITATIONS | | | | | | | | LAND SPILL - SMALL | | | | | | cross-linked polymer - particulate cross-linked polymer - pillow sorbent clay - particulate wood fiber - particulate | treated wood fiber - pillow | |-----------------------------| | LAND SPILL - MEDIUM | wood fiber - pillow | cross-linked polymer - particulate | 1 | blower | skiploader | R,W, SS | |------------------------------------|---|--------|------------|-----------------| | cross-linked polymer - pillow | 2 | throw | skiploader | R, DGC, RT | | sorbent clay - particulate | 3 | blower | skiploader | R, I, P | | polypropylene - particulate | 3 | blower | skiploader | W, SS, DGC | | expanded mineral - particulate | 4 | blower | skiploader | R, I, W, P, DGC | | wood fiber - particulate | 4 | blower | skiploader | R, W, P, DGC | shovel throw shovel shovel throw throw 1 2 3 3 3 shovel shovel shovel pitchfork pitchfork pitchfork R, W, SS R,I, P R, DGC, RT R, W, P, DGC R, P, DGC, RT DGC, RT ## Major Spills ### Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 - Clear area of personnel and move upwind. - ▶ Alert Fire Brigade and tell them location and nature of hazard. - ▶ May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). - ▶ No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - ▶ Water spray or fog may be used to disperse /absorb vapour. - Contain spill with sand, earth or vermiculite. - ▶ Use only spark-free shovels and explosion proof equipment. - ▶ Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - ▶ Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** Chemwatch: 43-4470 Version No: 5.1 #### Page 6 of 22 ## **POLYCURE 3920 Higrip Additive** Issue Date: 10/12/2021 Print Date: 17/01/2022 ## ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - Electrostatic discharge may be generated during pumping this may result in fire. - Ensure electrical continuity by bonding and grounding (earthing) all equipment. - ▶ Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. - ▶ Do NOT use compressed air for filling discharging or handling operations. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ► DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - DO NOT use plastic buckets. - ► Earth all lines and equipment. - ▶ Use spark-free tools when handling. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ Store in original containers in approved flammable liquid storage area. - ▶ Store away from incompatible materials in a cool, dry, well-ventilated area. - ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources. - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access. - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - Keep adsorbents for leaks and spills readily available. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ▶ Storage tanks should be above ground and diked to hold entire contents. ## Conditions for safe storage, including any incompatibilities ## ▶ Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - ► For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### Propylene glycol monomethyl ether acetate: - may polymerise unless properly inhibited due to peroxide formation - ▶ should be isolated from UV light, high temperatures, free radical initiators - ▶ may react with strong oxidisers to produce fire and/ or explosion - reacts violently with with sodium peroxide, uranium fluoride - b is incompatible with sulfuric acid, nitric acid, caustics, aliphatic amines, isocyanates, boranes - Avoid reaction with oxidising agents Other information Suitable container Storage incompatibility # Safe handling ## **SECTION 8 Exposure controls / personal protection** ## **Control parameters** ### Occupational Exposure Limits (OEL) ## INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|---|--------------------|------------------------|------------------------|------------------|------------------| | Australia Exposure | propylene glycol monomethyl ether acetate, alpha-isomer | 1-Methoxy- | 50 ppm / 274 | 548 mg/m3 / | Not | Not | | Standards | | 2-propanol acetate | mg/m3 | 100 ppm | Available | Available | | Australia Exposure | xylene | Xylene (o-, m-, p- | 80 ppm / 350 | 655 mg/m3 / | Not | Not | | Standards | | isomers) | mg/m3 | 150 ppm | Available | Available | | Australia Exposure
Standards | ethylbenzene | Ethyl benzene | 100 ppm / 434
mg/m3 | 543 mg/m3 /
125 ppm | Not
Available | Not
Available | | Australia Exposure | N-methyl-2-pyrrolidone | 1-Methyl- | 25 ppm / 103 | 309 mg/m3 / | Not | Not | | Standards | | 2-pyrrolidone | mg/m3 | 75 ppm | Available | Available | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |---|---------------|---------------|---------------| | propylene glycol monomethyl ether acetate, alpha-isomer | Not Available | Not Available | Not Available | | xylene | Not Available | Not Available | Not Available | | ethylbenzene | Not Available | Not Available | Not Available | | N-methyl-2-pyrrolidone | 30 ppm | 32 ppm | 190 ppm | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | propylene glycol monomethyl ether acetate, alpha-isomer | Not Available | Not Available | | xylene | 900 ppm | Not Available | |
ethylbenzene | 800 ppm | Not Available | | N-methyl-2-pyrrolidone | Not Available | Not Available | ## MATERIAL DATA for N-methyl-2-pyrrolidone (NMP): Reports of skin and eye irritation and chronic headaches have been reported in workers exposed to 1-methyl-2-pyrrolidone. The Australian ES is based on a 10-fold uncertainty factor of the no-observable-adverse-effect level (NOAEL) of 24 ppm where adverse respiratory effects were observed in a 4-week inhalation study in rats. for propylene glycol monomethyl ether acetate (PGMEA) Saturated vapour concentration: 4868 ppm at 20 C. A two-week inhalation study found nasal effects to the nasal mucosa in animals at concentrations up to 3000 ppm. Differences in the teratogenic potential of the alpha (commercial grade) and beta isomers of PGMEA may be explained by the formation of different metabolites. The beta-isomer is thought to be oxidised to methoxypropionic acid, a homologue to methoxyacetic acid which is a known teratogen. The alpha-form is conjugated and excreted. PGMEA mixture (containing 2% to 5% beta isomer) is a mild skin and eye irritant, produces mild central nervous system effects in animals at 3000 ppm and produces mild CNS impairment and upper respiratory tract and eye irritation in humans at 1000 ppm. In rats exposed to 3000 ppm PGMEA produced slight foetotoxic effects (delayed sternabral ossification) - no effects on foetal development were seen in rabbits exposed at 3000 ppm. for ethyl benzene: Odour Threshold Value: 0.46-0.60 ppm NOTE: Detector tubes for ethylbenzene, measuring in excess of 30 ppm, are commercially available. Ethyl benzene produces irritation of the skin and mucous membranes and appears to produce acute and chronic effects on the central nervous system. Animal experiments also suggest the effects of chronic exposure include damage to the liver, kidneys and testes. In spite of structural similarities to benzene, the material does not appear to cause damage to the haemopoietic system. The TLV-TWA is thought to be protective against skin and eye irritation. Exposure at this concentration probably will not result in systemic effects. Subjects exposed at 200 ppm experienced transient irritation of the eyes; at 1000 ppm there was eye irritation with profuse lachrymation; at 2000 ppm eye irritation and lachrymation were immediate and severe accompanied by moderate nasal irritation, constriction in the chest and vertigo; at 5000 ppm exposure produced intolerable irritation of the eyes and throat. Odour Safety Factor(OSF) OSF=43 (ETHYL BENZENE) for xylenes: IDLH Level: 900 ppm Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition) NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response). Xylene vapour is an irritant to the eyes, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce Chemwatch: 43-4470 Version No: 5.1 Page 8 of 22 **POLYCURE 3920 Higrip Additive** Issue Date: 10/12/2021 Print Date: 17/01/2022 intoxication and unconsciousness also produces transient liver and kidney toxicity. Neurologic impairment is NOT evident amongst volunteers inhaling up to 400 ppm though complaints of ocular and upper respiratory tract irritation occur at 200 ppm for 3 to 5 minutes. Exposure to xylene at or below the recommended TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An earlier skin notation was deleted because percutaneous absorption is gradual and protracted and does not substantially contribute to the dose received by inhalation. Odour Safety Factor(OSF) OSF=4 (XYLENE) ## **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|---------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5
m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | ## Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection Appropriate engineering controls - ► Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eve irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Eye and face protection ## Skin protection # Hands/feet protection - See Hand protection below - Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber For esters: Chemwatch: 43-4470 Page 9 of 22 Version No: 5.1 #### **POLYCURE 3920 Higrip Additive** Issue Date: 10/12/2021 Print Date: 17/01/2022 ▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection
class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - \cdot Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ## **Body protection** Other protection ## See Other protection below - Overalls. - ► PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - ► Eyewash unit. - Ensure there is ready access to a safety shower. - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. ## Recommended material(s) ## **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: #### "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: POLYCURE 3920 Higrip Additive | Material | СРІ | |-------------------|-----| | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | #### Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used Version No: 5.1 ## **POLYCURE 3920 Higrip Additive** Issue Date: 10/12/2021 Print Date: 17/01/2022 | NATURAL+NEOPRENE | С | 76a-p() | |------------------|---|---------| | NEOPRENE | С | | | NEOPRENE/NATURAL | С | | | NITRILE | С | | | NITRILE+PVC | С | | | PE/EVAL/PE | С | | | PVA | С | | | PVC | С | | | PVDC/PE/PVDC | С | | | TEFLON | С | | | VITON | С | | ^{*} CPI - Chemwatch Performance Index A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ## **SECTION 9 Physical and chemical properties** ## Information on basic physical and chemical properties ## **Appearance** White opaque viscous flammable liquid with a characteristic solvent odour; very slightly miscible with water. Note that all of the monopropylene glycol ethers may exist in two isomeric forms, alpha or beta. The alpha form, which is thermodynamically favored during synthesis, consists of a secondary alcohol configuration. The beta form consists of a primary alcohol. The two isomeric forms are shown above. The di- and tripropylene glycol ethers may form up to 4 and 8 isomeric forms, respectively. Even so, all isomers exhibit either the "alpha" or "beta" configuration, existing as secondary or primary alcohols, respectively. The distribution of isomeric forms for the di- and tripropylene glycols, as with the mono-PGEs, also results in predominantly the alpha form (i.e., a secondary alcohol). It should be noted that only the alpha isomer and isomeric mixtures (consisting predominantly of the alpha isomer) are produced commercially; the purified beta isomer is not produced at this time. | Physical state | Liquid | Relative density (Water = 1) | 0.86-0.95 | |--|-----------------|---|---------------------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | >245 | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 2800-6100 @25C | | Initial boiling point and boiling range (°C) | 142 (initial) | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 37 | Taste | Not Available | | Evaporation rate | 0.6 BuAC = 1 | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 7 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1.5 | Volatile Component (%vol) | 57-70 (VOC = 533-590 g/l) | | Vapour pressure (kPa) | 0.7 | Gas group | Not Available | | Solubility in water | Partly miscible | pH as a solution (Not
Available%) | Not Available | | Vapour density (Air = 1) | 4.2 | VOC g/L | Not Available | ## **SECTION 10 Stability and reactivity** Issue Date: **10/12/2021**Print Date: **17/01/2022** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 Toxicological information** #### Information on toxicological effects Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Mice exposed at up to 3000 ppm PGMEA 6 hr/day for a total of 9 days during an 11-day period showed no pronounced effect on the weights of liver, kidneys, heart, spleen, thymus or testes. Histopathological examination revealed degeneration of the olfactory epithelium in mice exposed at 300 ppm for the same time. Rats, similarly failed to show
changes in internal organs and did not show olfactory epithelium degeneration until 3000 ppm. The no-effect level in rats was 1000 ppm. #### Inhaled Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue. Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The main effects of simple aliphatic esters are narcosis and irritation and anaesthesia at higher concentrations. These effects become greater as the molecular weights and boiling points increase. Central nervous system depression, headache, drowsiness, dizziness, coma and neurobehavioral changes may also be symptomatic of overexposure. Respiratory tract involvement may produce mucous membrane irritation, dyspnea, and tachypnea, pharyngitis, bronchitis, pneumonitis and, in massive exposures, pulmonary oedema (which may be delayed). Gastrointestinal effects include nausea, vomiting, diarrhoea and abdominal cramps. Liver and kidney damage may result from massive exposures. ## Ingestion Accidental ingestion of the material may be damaging to the health of the individual. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Skin contact with the material may be harmful; systemic effects may result following absorption. $\label{lem:cause_skin} \mbox{Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.}$ The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either: - roduces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. ### **Skin Contact** Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Repeated application of commercial grade PGMEA to the skin of rabbits for 2-weeks caused slight redness and very slight Open cuts, abraded or irritated skin should not be exposed to this material ## Eye Limited evidence or practical experience suggests, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure may cause severe inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Undiluted propylene glycol monomethyl ether acetate (PGMEA) causes moderate discomfort, slight conjunctival redness and slight corneal injury in rabbits On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of: - clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Repeated exposure to higher concentrations of propylene glycol monomethyl ether acetate (PGMEA) (1000 ppm and above) causes mild liver and kidney damage in animals. A minor component, 2-methoxy-1-propyl acetate (the beta-isomer) produced birth defects on inhalation exposure of pregnant rabbits at 545 ppm, but not at 145 or 36 ppm; maternal and embryo/foetal toxicity on inhalation exposure of pregnant rats at 2710 ppm, but not at 545 or 110 ppm; and no adverse effects on dermal exposure of pregnant rabbits at applied dosages of 1000 and 2000 mg/kg of body weight per day during the critical period or embryo/foetal development. In a further study, no developmental effects were seen following exposure of pregnant rats at air concentrations of commercial propylene glycol monomethyl ether acetate (containing 3-5% of the minor component) up to 4000 ppm; slight maternal effects were seen at 5000 ppm and greater. Exposure of pregnant rats and rabbits to the parent glycol ether, propylene glycol monomethyl ether which contained comparable amounts of the primary isomer, 2-methoxy-1-propanol, did not produce teratogenic effects at concentrations up to 3000 ppm. Foetotoxic effects were seen in rat foetuses but not in rabbit foetuses at this concentration and maternal toxicity was noted in both species at this concentration ### Chronic Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions. Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex. Studies with some glycol ethers (principally the monoethylene glycols) and their esters indicate reproductive changes, testicular atrophy, infertility and kidney function changes. The metabolic acetic acid derivatives of glycol ethers (alkoxyacetic acids), not the ether itself, have been found to be the proximal reproductive toxin in animals. The potency of these metabolites decreases significantly as the chain length of the ether increases. Consequently glycol ethers with longer substituents (e.g diethylene glycols, triethylene glycols) have not generally been associated with reproductive effects. One of the most sensitive indicators of toxic effects observed from many of the glycol ethers is an increase in the erythrocytic osmotic fragility in rats Which produces haemolytic anaemia). This appears to be related to the development of haemoglobinuria (blood in the urine) at higher exposure levels or as a result of chronic exposure. Glycol ethers based on propylene oxides, propylene glycol ethers, dipropylene glycol ethers and tripropylene glycol ethers are mainly available, commercially, as alpha-isomers (because of thermodynamic considerations); these are incapable of forming alkoxyacetic or alkoxypropionic acids as metabolites and therefore do not produce erythrocyte fragility unless contaminated by ethylene glycol ethers or
to a significant degree by the beta-isomer. beta-lsomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly baemolytic effects). Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS] | POLYCURE 3920 Higrip | TOXICITY | IRRITATION | |--|--|--| | Additive | Not Available | Not Available | | | TOXICITY | IRRITATION | | propylene glycol monomethyl ether acetate, | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | alpha-isomer | Oral (Rat) LD50; 3739 mg/kg ^[2] | Skin: no adverse effect observed (not irritating) ^[1] | | | | | | | TOXICITY | IRRITATION | | | TOXICITY Dermal (rabbit) LD50: >1700 mg/kg ^[2] | IRRITATION Eye (human): 200 ppm irritant | | xylene | | | | xylene | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye (human): 200 ppm irritant | | xylene | Dermal (rabbit) LD50: >1700 mg/kg ^[2] Inhalation(Rat) LC50; 5000 ppm4h ^[2] | Eye (human): 200 ppm irritant Eye (rabbit): 5 mg/24h SEVERE | Issue Date: **10/12/2021**Print Date: **17/01/2022** | | | Skin (rabbit):500 mg/24h moderate | | |------------------------|---|--|--| | | | Skin: adverse effect observed (irritating) ^[1] | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: 17800 mg/kg ^[2] | Eye (rabbit): 500 mg - SEVERE | | | ethylbenzene | Inhalation(Rat) LC50; 17.2 mg/l4h ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Oral (Rat) LD50; 3500 mg/kg ^[2] | Skin (rabbit): 15 mg/24h mild | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: 8000 mg/kg ^[2] | Eye (rabbit): 100 mg - moderate | | | N-methyl-2-pyrrolidone | Inhalation(Rat) LC50; 3.1-8.8 mg/l4h ^[2] | | | | | Oral (Rat) LD50; 3914 mg/kg ^[2] | | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | ## PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS ## **XYLENE** Reproductive effector in rats The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Liver changes, utheral tract, effects on fertility, foetotoxicity, specific developmental abnormalities (musculoskeletal system) recorded. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Ethylbenzene is readily absorbed following inhalation, oral, and dermal exposures, distributed throughout the body, and excreted primarily through urine. There are two different metabolic pathways for ethylbenzene with the primary pathway being the alpha-oxidation of ethylbenzene to 1-phenylethanol, mostly as the R-enantiomer. The pattern of urinary metabolite excretion varies with different mammalian species. In humans, ethylbenzene is excreted in the urine as mandelic acid and phenylgloxylic acids; whereas rats and rabbits excrete hippuric acid and phenaceturic acid as the main metabolites. Ethylbenzene can induce liver enzymes and hence its own metabolism as well as the metabolism of other substances. Ethylbenzene has a low order of acute toxicity by the oral, dermal or inhalation routes of exposure. Studies in rabbits indicate that ethylbenzene is irritating to the skin and eyes. There are numerous repeat dose studies available in a variety of species, these include: rats, mice, rabbits, guinea pig and rhesus monkeys. Hearing loss has been reported in rats (but not guinea pigs) exposed to relatively high exposures (400 ppm and greater) of ethylbenzene ## ETHYLBENZENE In chronic toxicity/carcinogenicity studies, both rats and mice were exposed via inhalation to 0, 75, 250 or 750 ppm for 104 weeks. In rats, the kidney was the target organ of toxicity, with renal tubular hyperplasia noted in both males and females at the 750 ppm level only. In mice, the liver and lung were the principal target organs of toxicity. In male mice at 750 ppm, lung toxicity was described as alveolar epithelial metaplasia, and liver toxicity was described as hepatocellular syncitial alteration, hypertrophy and mild necrosis; this was accompanied by increased follicular cell hyperplasia in the thyroid. As a result the NOAEL in male mice was determined to be 250 ppm. In female mice, the 750 ppm dose group had an increased incidence of eosinophilic foci in the liver (44% vs 10% in the controls) and an increased incidence in follicular cell hyperplasia in the thyroid gland. In studies conducted by the U.S. National Toxicology Program, inhalation of ethylbenzene at 750 ppm resulted in increased lung tumors in male mice, liver tumors in female mice, and increased kidney tumors in male and female rats. No increase in tumors was reported at 75 or 250 ppm. Ethylbenzene is considered to be an animal carcinogen, however, the relevance of these findings studies indicate that the reproductive organs are not a target for ethylbenzene toxicity Ethylbenzene was negative in bacterial gene mutation tests and in a yeast assay on mitotic recombination. **NOTE:** Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. to humans is currently unknown. Although no reproductive toxicity studies have been conducted on ethylbenzene, repeated-dose WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. ## N-METHYL-2-PYRROLIDONE Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent Issue Date: **10/12/2021**Print Date: **17/01/2022** disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. for N-methyl-2-pyrrolidone (NMP): **Acute toxicity:** In rats, NMP is absorbed rapidly after inhalation, oral, and dermal administration, distributed throughout the organism, and eliminated mainly by hydroxylation to polar compounds, which are excreted via urine. About 80% of the administered dose is excreted as NMP and NMP metabolites within 24 h. A probably dose-dependent yellow coloration of the urine in rodents is observed. The major metabolite is 5-hydroxy-*N*-methyl-2-pyrrolidone. Studies in humans show comparable results. Dermal penetration through human skin has been shown to be very rapid. NMP is rapidly biotransformed by hydroxylation to 5-hydroxy-*N*-methyl-2-pyrrolidone, which is further oxidized to *N*-methylsuccinimide; this intermediate is further hydroxylated to 2-hydroxy-*N*-methylsuccinimide. These metabolites are all colourless. The excreted amounts of NMP metabolites in the urine after inhalation or oral intake represented about 100% and 65% of the administered doses, respectively. NMP has a low potential for skin irritation and a moderate potential for eye irritation in rabbits. Repeated daily doses of 450 mg/kg body weight administered to the skin caused painful and severe haemorrhage and eschar formation in rabbits. These adverse effects have not been seen in workers occupationally exposed to pure NMP, but they have been observed after dermal exposure to NMP used in cleaning processes. No sensitisation potential has been observed. In acute toxicity studies in rodents, NMP showed low toxicity. Uptake of oral, dermal, or inhaled acutely toxic doses causes functional disturbances and depressions in the central nervous system. Local irritation effects were observed in the respiratory tract when NMP was inhaled and in the pyloric and gastrointestinal tracts after oral administration. In humans, there was no
irritative effect in the respiratory system after an 8-h exposure to 50 mg/m3. Repeat dose toxicity: There is no clear toxicity profile of NMP after multiple administration. In a 28-day dietary study in rats, a compound-related decrease in body weight gain was observed in males at 1234 mg/kg body weight and in females at 2268 mg/kg body weight. Testicular degeneration and atrophy in males and thymic atrophy in females were observed at these dose levels. The no-observed-adverse-effect level (NOAEL) was 429 mg/kg body weight in males and 1548 mg/kg body weight in females. In a 28-day intubation study in rats, a dose-dependent increase in relative liver and kidney weights and a decrease in lymphocyte count in both sexes were observed at 1028 mg/kg body weight. The NOAEL in this study was 514 mg/kg body weight. In another rat study, daily dietary intake for 90 days caused decreased body weights at doses of 433 and 565 mg/kg body weight in males and females, respectively. There were also neurobehavioural effects at these dose levels. The NOAELs in males and females were 169 and 217 mg/kg body weight, respectively. The toxicity profile after exposure to airborne NMP depends strongly on the ratio of vapour to aerosol and on the area of exposure (i.e., head-only or whole-body exposure). Because of higher skin absorption for the aerosol, uptake is higher in animals exposed to aerosol than in those exposed to vapour at similar concentrations. Studies in female rats exposed head only to 1000 mg/m3 showed only minor nasal irritation, but massive mortality and severe effects on major organs were observed when the females were whole-body exposed to the same concentration of coarse droplets at high relative humidity. Several studies in rats following repeated exposure to NMP at concentrations between 100 and 1000 mg/m3 have shown systemic toxicity effects at the lower dose levels. In most of the studies, the effects were not observed after a 4-week observation period. In rats, exposure to 3000 mg NMP/m3 (head only) for 6 h/day, 5 days/week, for 13 weeks caused a decrease in body weight gain, an increase in erythrocytes, haemoglobin, haematocrit, and mean corpuscular volume, decreased absolute testis weight, and cell loss in the germinal epithelium of the testes. The NOAEL was 500 mg/m3. There are no data in humans after repeated-dose exposure. Carcinogenicity: NMP did not show any clear evidence for carcinogenicity in rats exposed to concentrations up to 400 mg/m3 in a long-term inhalation study. **Genotoxicity:** The mutagenic potential of NMP is weak. Only a slight increase in the number of revertants was observed when tested in a *Salmonella* assay with base-pair substitution strains. NMP has been shown to induce aneuploidy in yeast *Saccharomyces cerevisiae* cells. No investigations regarding mutagenicity in humans were available. **Reproductive toxicity:** In a two-generation reproduction study in rats, whole-body exposure of both males and females to 478 mg/m3 of NMP vapour for 6 h/day, 7 days/week, for a minimum of 100 days (pre-mating, mating, gestation, and lactation periods) resulted in a 7% decrease in fetal weight in the F1 offspring. A 4-11% transient, non-dose-dependent decrease was observed in the average pup weight at all exposure levels tested (41, 206, and 478 mg/m3). **Developmental toxicity:** When NMP was administered dermally, developmental toxicity was registered in rats at 750 mg/kg body weight. The observed effects were increased preimplantation losses, decreased fetal weights, and delayed ossification. The NOAEL for both developmental effects and maternal toxicity (decreased body weight gain) was 237 mg/kg body weight. Inhalation studies in rats (whole-body exposure) demonstrated developmental toxicity as increased preimplantation loss without significant effect on implantation rate or number of live fetuses at 680 mg/m3 and behavioural developmental toxicity at 622 mg/m3. In an inhalation study (whole-body exposure), the NOAEL for maternal effects was 100 mg/m3, and the NOAEL for developmental effects was 360 mg/m3. A tolerable inhalation concentration, 0.3 mg/m3, based on mortality and organ damage, is expected to be protective against any possible reproductive toxicity. Similarly, an oral tolerable intake of 0.6 mg/kg body weight per day, based on a 90-day study, is expected to provide adequate protection against possible reproductive effects. Because of non-existent data on the exposure of the general population and very limited information on occupational exposure, no meaningful risk characterisation can be performed A substance (or part of a group of chemical substances) of very high concern (SVHC) - or product containing an SVHC: It is proposed that use within the European Union be subject to authorisation under the REACH Regulation.Indeed, listing of a substance as an SVHC by the European Chemicals Agency (ECHA) is the first step in the procedure for authorisation or restriction of use of a chemical. The criteria are given in article 57 of the REACH Regulation. A substance may be proposed as an SVHC if it meets one or more of the following criteria: - ▶ it is carcinogenic *; - it is mutagenic *; - it is toxic for reproduction *; Issue Date: 10/12/2021 Print Date: 17/01/2022 - it is persistent, bioaccumulative and toxic (PBT substances); - it is very persistent and very bioaccumulative (vPvB substances); - there is "scientific evidence of probable serious effects to human health or the environment which give rise to an equivalent level of concern"; such substances are identified on a case-by-case basis. - * Collectively described as CMR substances The "equivalent concern" criterion is significant because it is this classification which allows substances which are, for example, neurotoxic, endocrine-disrupting or otherwise present an unanticipated environmental health risk to be regulated under REACH] Simply because a substance meets one or more of the criteria does not necessarily mean that it will be proposed as an SVHC. Many such substances are already subject to restrictions on their use within the European Union, such as those in Annex XVII of the REACH Regulation SVHCs are substances for which the current restrictions on use (where these exist) might be insufficient. There are three priority groups for assessment: - PBT substances and vPvB substances; - substances which are widely dispersed during use: - substances which are used in large quantities. ### POLYCURE 3920 Higrip Additive & XYLENE & ETHYLBENZENE The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. # POLYCURE 3920 Higrip Additive & XYLENE The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. for propylene glycol ethers (PGEs): Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM). Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids. Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects). This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product. Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body. As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces. As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal
LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating None are skin sensitisers. In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested). Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members. One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on POLYCURE 3920 Higrip Additive & PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER Chemwatch: 43-4470 Page 16 of 22 Version No: 5.1 POLYCUPE 2020 Hier ## **POLYCURE 3920 Higrip Additive** Issue Date: **10/12/2021**Print Date: **17/01/2022** reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health. In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity. The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPMA and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice. A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] | Acute Toxicity | × | Carcinogenicity | ~ | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ~ | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | ~ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: - X Data either not available or does not fill the criteria for classification - ✓ Data available to make classification ## **SECTION 12 Ecological information** ## **Toxicity** | DOLVOURE 2000 Himmin | Endpoint | Test Duration (hr) | | Species | | Value | Source | |--|------------------|---------------------------------|-----------------------------------|-------------------------------|-----------------|------------------|------------------| | POLYCURE 3920 Higrip
Additive | Not
Available | Not Available | | Not Available | | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | | Species | | Value | Source | | | NOEC(ECx) | 336h | | Fish | | 47.5mg/l | 2 | | propylene glycol | LC50 | 96h | | Fish | | >100mg/l | 2 | | nonomethyl ether acetate, alpha-isomer | EC50 | 72h | | Algae or other aquatic plants | | >1000mg/l | 2 | | | EC50 | 48h | | Crustacea | | 373mg/l | 2 | | | EC50 | 96h | | Algae or other aquatic plants | | >1000mg/l | 2 | | | Endpoint | Test Duration (hr) | | Species | | Value | Source | | | NOEC(ECx) | 73h | | Algae or other aquatic plants | | 0.44mg/l | 2 | | xylene | LC50 | 96h | | Fish | | 2.6mg/l | 2 | | | EC50 | 72h Algae or other aquatic plan | | Algae or other aquatic plants | | 4.6mg/l | 2 | | | EC50 | 48h | | Crustacea | | 1.8mg/l | 2 | | | Endpoint | Test Duration (hr) | S | pecies | Valu | ıe | Source | | | NOEC(ECx) | 720h | Fi | sh | 0.38 | 31mg/L | 4 | | | LC50 | 96h Fish | | 3.38 | 3.381-4.075mg/L | | | | ethylbenzene | EC50 | 72h | 72h Algae or other aquatic plants | | 4.6mg/l | | 1 | | | EC50 | 48h | Crustacea | | 1.37 | 1.37-4.4mg/l | | | | EC50 | 96h | Algae or other aquatic plants | | 3.6r | ng/l | 2 | | | Endpoint | Test Duration (hr) | | Species | | Value | Source | | | NOEC(ECx) | 504h | | Crustacea | | 12.5mg/l | 2 | | N-methyl-2-pyrrolidone | LC50 | 96h | | Fish | | 464mg/l | 1 | | | | 72h | | Algae or other aquatic plants | | | 1 | Issue Date: **10/12/2021**Print Date: **17/01/2022** EC50 48h Crustacea ca.4897mg/l 1 Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Harmful to aquatic organisms. for propylene glycol ethers: #### **Environmental fate:** Most are liquids at room temperature and all are water-soluble. Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM) Environmental fate: Log octanol-water partition coefficients (log Kow's) range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants, which indicate propensity to partition from water to air, are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Fugacity modeling indicates that most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). Propylene glycol ethers are unlikely to persist in the environment. Once in air, the half-life of the category members due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. In water, most members of this family are "readily biodegradable" under aerobic conditions. (DPMA degraded within 28 days (and within the specified 10-day window) but only using pre-adapted or "acclimated" inoculum.). In soil, biodegradation is rapid for PM and PMA. #### Ecotoxicity: Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. For ethers, effect concentrations are > 500 mg/L. For acetates, effect concentrations are > 151 mg/L. #### For aromatic hydrocarbons: Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as
phenanthrene. The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound. Anthracene is a phototoxic PAH . UV light greatly increases the toxicity of anthracene to bluegill sunfish. . Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not. Volatile furandiones and aldehydes are significant atmospheric oxidation products of aromatic compounds. Highly acidic dicarboxylic acids produced by the reactions between furandiones and water were shown to rapidly acidify an aqueous phase #### For xylenes : log Koc : 2.05-3.08 Koc : 25.4-204 Half-life (hr) air : 0.24-42 Half-life (hr) H2O surface water : 24-672 Half-life (hr) H2O ground : 336-8640 Half-life (hr) soil : 52-672 Henry's Pa m3 /mol: 637-879 Henry's atm m3 /mol: 7.68E-03 BOD 5 if unstated: 1.4,1% COD: 2.56,13% ThOD: 3.125 BCF: 23 log BCF: 1.17-2.41 # Environmental Fate Terrestrial fate:: Measured Koc values of 166 and 182, indicate that 3-xylene is expected to have moderate mobility in soil. Volatilisation of p-xylene is expected to be important from moist soil surfaces given a measured Henry's Law constant of 7.18x10-3 atm-cu m/mole. The potential for volatilisation of 3-xylene from dry soil surfaces may exist based on a measured vapor pressure of 8.29 mm Hg. p-Xylene may be degraded during its passage through soil). The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. p-Xylene, present in soil samples contaminated with jet fuel, was completely degraded aerobically within 5 days. In aquifer studies under anaerobic conditions, p-xylene was degraded, usually within several weeks, with the production of 3-methylbenzylfumaric acid, 3-methylbenzylsuccinic acid, 3-methylbenzaldehyde as metabolites. Aquatic fate: Koc values indicate that p-xylene may adsorb to suspended solids and sediment in water. p-Xylene is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. BCF values of 14.8, 23.4, and 6, measured in goldfish, eels, and clams, respectively, indicate that bioconcentration in aquatic organisms is low. p-Xylene in water with added humic substances was 50% degraded following 3 hours irradiation suggesting that indirect photooxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. Although p-xylene is biodegradable and has been observed to degrade in pond water, there are insufficient data to assess the rate of this process in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater in several studies; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. #### Atmospheric fate Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere primarily by reaction with photochemically-produced hydroxyl radicals, with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylenes' susceptibility to photochemical oxidation in the troposphere is to the extent that Issue Date: **10/12/2021**Print Date: **17/01/2022** they may contribute to photochemical smog formation. According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and from its vapour pressure, p-xylene, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase p-xylene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 16 hours. A half-life of 1.0 hr in summer and 10 hr in winter was measured for the reaction of p-xylene with photochemically-produced hydroxyl radicals. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers, with loss rates varying from 9-42% per hr. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, and 4-nitro-2,6-dimethylphenol. #### **Ecotoxicity:** for xylenes Fish LC50 (96 h) Pimephales promelas 13.4 mg/l; Oncorhyncus mykiss 8.05 mg/l; Lepomis macrochirus 16.1 mg/l (all flow through values); Pimephales promelas 26.7 (static) Daphnia EC50 948 h): 3.83 mg/l Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/l Gammarus lacustris LC50 (48 h): 0.6 mg/l #### For glycol ethers: #### **Environmental fate:** Ether groups are generally stable to hydrolysis in water under neutral conditions and ambient temperatures. OECD guideline studies indicate ready biodegradability for several glycol ethers although higher molecular weight species seem to biodegrade at a slower rate. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. Upon release to the atmosphere by evaporation, high boiling glycol ethers are estimated to undergo photodegradation (atmospheric half lives = 2.4-2.5 hr). When released to water, glycol ethers undergo biodegradation (typically 47-92% after 8-21 days) and have a low potential for bioaccumulation (log Kow ranges from -1.73 to +0.51). #### **Ecotoxicity:** Aquatic toxicity data indicate that the tri- and tetra ethylene glycol ethers are "practically non-toxic" to aquatic species. No major differences are observed in the order of toxicity going from the methyl- to the butyl ethers. Glycols exert a high oxygen demand for decomposition and once released to the environments cause the death of aquatic organisms if dissolved oxygen is depleted. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | |---|-----------------------------|-----------------------------|--| | propylene glycol monomethyl ether acetate, alpha-isomer | LOW | LOW | | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | | ethylbenzene | HIGH (Half-life = 228 days) | LOW (Half-life = 3.57 days) | | | N-methyl-2-pyrrolidone | LOW | LOW | | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |---|---------------------| | propylene glycol monomethyl ether acetate, alpha-isomer | LOW (LogKOW = 0.56) | | xylene | MEDIUM (BCF = 740) | | ethylbenzene | LOW (BCF = 79.43) | | N-methyl-2-pyrrolidone | LOW (BCF = 0.16) | ## Mobility in soil | Ingredient | Mobility | |---|--------------------| | propylene glycol monomethyl ether acetate, alpha-isomer | HIGH (KOC = 1.838) | | ethylbenzene | LOW (KOC = 517.8) | | N-methyl-2-pyrrolidone | LOW (KOC = 20.94) | ## **SECTION 13 Disposal considerations** ## Waste treatment methods # Product / Packaging disposal - ▶ Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. #### Otherwise: ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to Issue Date: **10/12/2021**Print Date: **17/01/2022** store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ► Reuse - ► Recycling - ► Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ## **SECTION 14 Transport information** ## **Labels Required** Marine Pollutant
NO •3Y HAZCHEM ## Land transport (ADG) | UN number | 1263 | | | | |------------------------------|---|--|--|--| | UN proper shipping name | • | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | | Transport hazard class(es) | Class
Subrisk | | | | | Packing group | III | | | | | Environmental hazard | Not Applicab | Not Applicable | | | | Special precautions for user | Special provisions 163 223 367 Limited quantity 5 L | | | | ## Air transport (ICAO-IATA / DGR) | UN number | 1263 | | | | |------------------------------|---|---------------------|---|--| | UN proper shipping name | Paint related material (ir varnish, polish, liquid fille | 0. | or reducing compounds); Paint (including paint, lacquer, enamel, stain, shellac, ase) | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 3 Not Applicable 3L | | | | Packing group | III | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | Special provisions Cargo Only Packing Ir Cargo Only Maximum | | A3 A72 A192
366
220 L | | Issue Date: **10/12/2021**Print Date: **17/01/2022** | Passenger and Cargo Packing Instructions | 355 | |---|------| | Passenger and Cargo Maximum Qty / Pack | 60 L | | Passenger and Cargo Limited Quantity Packing Instructions | Y344 | | Passenger and Cargo Limited Maximum Qty / Pack | 10 L | ## Sea transport (IMDG-Code / GGVSee) | UN number | 1263 | | | |------------------------------|--|-----------------|--| | UN proper shipping name | PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number F-E , S Special provisions 163 22 Limited Quantities 5 L | -E
3 367 955 | | ## Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---|---------------| | propylene glycol monomethyl ether acetate, alpha-isomer | Not Available | | xylene | Not Available | | ethylbenzene | Not Available | | N-methyl-2-pyrrolidone | Not Available | ## Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |---|---------------| | propylene glycol monomethyl ether acetate, alpha-isomer | Not Available | | xylene | Not Available | | ethylbenzene | Not Available | | N-methyl-2-pyrrolidone | Not Available | ## **SECTION 15 Regulatory information** ## Safety, health and environmental regulations / legislation specific for the substance or mixture ## propylene glycol monomethyl ether acetate, alpha-isomer is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) ## xylene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 ethylbenzene is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs # Page 21 of 22 POLYCURE 3920 Higrip Additive Issue Date: **10/12/2021**Print Date: **17/01/2022** Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans #### N-methyl-2-pyrrolidone is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\bf 6$ Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List ## **National Inventory Status** | National Inventory | Status | | |--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (propylene glycol monomethyl ether acetate, alpha-isomer; xylene; ethylbenzene; N-methyl-2-pyrrolidone) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | ### **SECTION 16 Other information** | Revision Date | 10/12/2021 | |---------------|------------| | Initial Date | 08/10/2014 | ### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|---| | 4.1 | 15/04/2021 | Classification change due to full database hazard calculation/update. | | 5.1 | 10/12/2021 | Classification change due to full database hazard calculation/update. | ## Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer Page 22 of 22 **POLYCURE 3920 Higrip Additive** Issue Date: **10/12/2021**Print Date: **17/01/2022** ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers **ENCS: Existing and New Chemical Substances Inventory** KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances ### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.